Simulation on Rank-1 Lattices
نویسنده
چکیده
Rank-1 lattices are available in any dimension for any number of lattice points and because their generation is so efficient, they often are used in quasi-Monte Carlo methods. Applying the Fourier transform to functions sampled on rank-1 lattice points turns out to be simple and efficient if the number of lattice points is a power of two. Considering the Voronoi diagram of a rank-1 lattice as a partition of the simulation domain and its dual, the Delauney tessellation, as a mesh for display and interpolation, rank-1 lattices are an interesting alternative to tensor product lattices. Instead of classical criteria, we investigate lattices selected by maximized minimum distance, because then the Delauney tessellation becomes as equilateral as possible. Similar arguments apply for the selection of the wave vectors. We explore the use of rank-1 lattices for the examples of stochastic field synthesis and a simple fluid solver with periodic boundary conditions.
منابع مشابه
Universal Z-lattices of Minimal Rank
Let UZ(n) be the minimal rank of n-universal Z-lattices, by which we mean positive definite Z-lattices which represent all positive Z-lattices of rank n. It is a well known fact that UZ(n) = n + 3 for 1 ≤ n ≤ 5. In this paper, we determine UZ(n) and find all n-universal lattices of rank UZ(n) for 6 ≤ n ≤ 8.
متن کاملTrees and Discrete Subgroups of Lie Groups over Local Fields
Let K be a locally compact field and G a simple AT-group, G = G(K). A discrete subgroup T of G is called a lattice if G/F carries a finite G-invariant measure. It is a uniform (or cocompact) lattice if G/T is compact and nonuniform otherwise. When the jRf-rank of G is greater than one, Margulis [Ma, Z] proved that T is arithmetic, establishing the conjecture of Selberg and PiatetskiShapiro. Thi...
متن کاملFast, exact and stable reconstruction of multivariate algebraic polynomials in Chebyshev form
We describe a fast method for the evaluation of an arbitrary high-dimensional multivariate algebraic polynomial in Chebyshev form at the nodes of an arbitrary rank-1 Chebyshev lattice. Our main focus is on conditions on rank-1 Chebyshev lattices allowing for the exact reconstruction of such polynomials from samples along such lattices and we present an algorithm for constructing suitable rank-1...
متن کاملHigh-dimensional sparse FFT based on sampling along multiple rank-1 lattices
The reconstruction of high-dimensional sparse signals is a challenging task in a wide range of applications. In order to deal with high-dimensional problems, efficient sparse fast Fourier transform algorithms are essential tools. The second and third authors have recently proposed a dimension-incremental approach, which only scales almost linear in the number of required sampling values and alm...
متن کاملTextures on Rank-1 Lattices
Storing textures on orthogonal tensor product lattices is predominant in computer graphics, although it is known that their sampling efficiency is not optimal. In two dimensions, the hexagonal lattice provides the maximum sampling efficiency. However, handling these lattices is difficult, because they are not able to tile an arbitrary rectangular region and have an irrational basis. By storing ...
متن کامل